Extreme Learning Machine with Randomly Assigned RBF Kernels

نویسنده

  • Guang-Bin Huang
چکیده

A new learning algorithm called extreme learning machine (ELM) has recently been proposed for single-hidden layer feedforward neural networks (SLFNs) with additive neurons to easily achieve good generalization performance at extremely fast learning speed. ELM randomly chooses the input weights and analytically determines the output weights of SLFNs. It is proved in theory that ELM can be extended to single-hidden layer feedforward neural networks (SLFNs) with radial basis function (RBF) kernels RBF networks, which allows the centers and impact widths of RBF kernels to be randomly generated and the output weights to be simply analytically calculated instead of iteratively tuned. The kernel function of ELM can be any nonlinear bounded integrable function which is almost continuous anywhere. Interestingly, the experimental results show that the ELM algorithm for RBF networks can complete learning at extremely fast speed and produce generalization performance very close to that of SVM in some benchmarking function approximation and classification problems. Index terms Radial basis function network, feedforward neural networks, real time learning, extreme learning machine, ELM, arbitrary kernels. The preliminary idea of the ELM algorithm for RBF networks has been shown in the Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV 2004), Dec 6-9, Kunming, China. Guang-Bin Huang and Chee-Kheong Siew Extreme Learning Machine with Randomly Assigned RBF Kernels

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Sequential Extreme Learning Machine

The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...

متن کامل

Generalized RBF feature maps for Efficient Detection

These kernels combine the benefits of two other important classes of kernels: the homogeneous additive kernels (e.g. the χ2 kernel) and the RBF kernels (e.g. the exponential kernel). However, large scale problems require machine learning techniques of at most linear complexity and these are usually limited to linear kernels. Recently, Maji and Berg [2] and Vedaldi and Zisserman [4] proposed exp...

متن کامل

A Comparison Study of Nonlinear Kernels

Compared to linear kernel, nonlinear kernels can often substantially improve the accuracies of many machine learning algorithms. In this paper, we compare 5 different nonlinear kernels: minmax, RBF, fRBF (folded RBF), acos, and acos-χ, on a wide range of publicly available datasets. The proposed fRBF kernel performs very similarly to the RBF kernel. Both RBF and fRBF kernels require an importan...

متن کامل

KMOD - A New Support Vector Machine Kernel with Moderate Decreasing for Pattern Recognition. Application to Digit Image Recognition

A new direction in machine learning area has emerged from Vapnik’s theory in support vectors machine and its applications on pattern recognition. In this paper, we propose a new SVM kernel family (KMOD) with distinctive properties that allow better discrimination in the feature space. The experiments that we carry out show its effectiveness on synthetic and large-scale data. We found KMOD behav...

متن کامل

Nystrom Method for Approximating the GMM Kernel

The GMM (generalized min-max) kernel was recently proposed [5] as a measure of data similarity and was demonstrated effective in machine learning tasks. In order to use the GMM kernel for large-scale datasets, the prior work resorted to the (generalized) consistent weighted sampling (GCWS) to convert the GMM kernel to linear kernel. We call this approach as “GMM-GCWS”. In the machine learning l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005